
Author-Oriented Model for Information Retrieval

4th May 2004

William Lee
University of Illinois at Urbana-Campaign

wwlee1@uiuc.edu

CheungXiang Zhai
University of Illinois at Urbana-Champaign

czhai@cs.uiuc.edu

Abstract

This paper proposes a new model for information retrieval through the use of an author's pass
information. This model assumes that if an author writes more about a particular topic, then the
document that he/she have written should be more insightful than the other similarly relevant
documents. Therefore, those documents written by experienced authors should be ranked higher.
This paper describes an application of this model to retrieving messages from a mailing list or
a newsgroup environment. In particular, we have derived an architecture named CEES, or
Conversation Extraction and Evaluation Service, to archive, index, and retrieve documents
from a mailing list or newsgroup. We have also conduct a preliminary retrieval performance
evaluation based on a set of tagged mailing list messages.

1 Introduction

Many useful technical conversations take place in newsgroups and mailing lists every day. Even
with the growth of the WWW and web-based forums, Usenet and mailing list still represent a large
portion of the internet tra�c. For instance, most open source software projects have one or more
mailing lists. Various issues are discussed in the forums varying from simple questions on product
installation to expert con�guration for large scale load balancing.

As an example, the Apache Tomcat (a popular Java web application server) user mailing list
has on average around 13MB of mail tra�c each month from March 2000 to March 2004. There
are 37587 messages exchanged in that mailing list alone in 2003. This implies a subscriber to that
mailing list on average receive more than 100 messages a day! For a new subscriber, picking out
relevant information from this tra�c is a challenging task, even though many mailing lists have
searchable archives dated several years back. However, a casual survey on several mailing lists
results in many repeated messages asking the poster to �rst search the mailing list archive. This
shows that the ine�ectiveness for the existing search system.

Although retrieving documents from the Usenet and mailing resembles retrieving a plain text
or web document, mailing list messages have some unique features that can be used to potentially
improve retrieval performance. First of all, some structured information within the document
is easily obtained through the Subject and From/To headers. Retrieval systems can also derive
inter-message relationship using the In-Reply-To and References header. Rather than considering
messages as separate documents, a model that utilizes the mailing list's background information
may have desirable properties to better satisfy information need. Using such information, one may
expect to improve the retrieval performance.

1

In a mailing list or newsgroup, people can be generally divided into two groups: �seekers�
that look for information, and �providers� that has the expertise to answers those questions. This
separation is, of course, not concrete, since many providers are seekers as well. One would expect,
however, that the providers that have posted multiple times before will have more relevant messages
that can satisfy the seekers. For example, in the Tomcat mailing list, one would expect a Tomcat
developer will have more relevant posts than a newcomer that recently joins the mailing list. Those
messages posted by the developer should deserve a better ranking.

For new subscribers to the mailing list or newsgroup, even though they knows what they want
when searching for the mailing list archive, it is inconceivable to assume that they can evaluate the
quality of the documents retrieved by the system. For one thing, the retrieval system can potentially
return many relevant messages, since their questions have probably been asked many times before.
Since new subscribers do not generally know the other subscribers in a public mailing list, all they
may see is a collection of varying responses to their questions. However, they have no way to know
the credibility of the authors behind those messages. Our proposed model attempts to �ll in the
background knowledge for the user and incorporate this information in the retrieval results.

2 Background

Not much work on information retrieval tried to evaluate the retrieval performance using background
information in a newsgroup or a mailing list context. There are several papers from the user interface
domain that have experimented with alternative ways to visualize the conversation structure for
better understanding of the newsgroup structure [1, 6]. In particular, one of Andrew's �piano roll�
display includes a ranked list of authors who contributes the most number of posts in the thread.
Andrew believes that this component can help users identify the more relevant posts. However, it is
not known how much of this information can potentially a�ect the information retrieval performance.

Fundamentally, most information retrieval methods would apply to the mailing list context with-
out much modi�cation. In particular, since email messages in general has more de�ned structure,
we can potentially leverage the work done on structured information retrieval [3, 4, 5, 7] and various
smoothing strategies [8, 2].

The work done in this paper has not incorporated the more sophisticated methods such as the
mixture model and parameter estimation in more recent information retrieval works. More advanced
techniques should be examined and experimented in the future.

3 A Model for Author-Oriented Information Retrieval

Our new model divided a newsgroup message into 3 parts, the subject, the body, and the document
model represented by the author of the message. They are all considered as part of the overall
document model for retrieval. The basic retrieval method uses the Kullback-Leibler divergence
retrieval model described by Zhai and La�erty in [9]. In such model, a document is ranked by
its similarity of distribution between the query and the document model. In particular, given two
distribution functions p and q, the KL divergence, or relatively entropy, D(p||q), is de�ned as:

D(p||q) =
∑

x

p(x) log
p(x)
q(x)

In a generative model a query q is generated by the query mode θQ and the document d is generated
by the document model θD. Their best estimated models are θ̂Q and θ̂D respectively. The score of

2

the document can be expressed as their KL divergence:

D(θ̂Q||θ̂D) =
∑
w

p(w|θ̂Q) log
p(w|θ̂Q)

p(w|θ̂D)

Essentially, we want the most probable query model that generated the query and the document
model that generates the document to have minimum divergence. Therefore, we take the negative
divergence [9] instead. The formula becomes:

−D(θ̂Q||θ̂D) =
∑
w

p(w|θ̂Q) log p(w|θ̂D)−
∑
w

p(w|θ̂Q) log p(w|θ̂Q)

We can ignore the right-most component for the purpose of ranking document, since it describes
only the entropy of the query model θ̂Q. Note that:

p(w|θ̂D) =
{

ps(w|d) if w is seen
αDp(w|C) otherwise

The probability ps(w|D) is the probability that the word w is seen in document d, and p(w|C) is
the probability of the unseen word w in the entire collection. The parameter αd is a weighting
parameter to balance between the seen and unseen word. Given ps(w|D), we must have:

α =
1−

∑
w:c(w;d)>0 ps(w|d)

1−
∑

w:c(w;d)>0 p(w|C)

and it can be shown that from [9]:∑
w:c(w;d)>0

log p(w|θ̂Q)
ps(w|d)

αdp(w|C)
+ log αd

can be used to rank the documents. Using Dirichlet prior smoothing for which:

ps(w|d) =
c(w; d) + µp(w|C)

|d|+ µ

, we can set αd to

αd =
µ

|d|+ µ

where µ is the Dirichlet prior.
The �rst two components in our model, the body and subject, can be computed e�ciently with

the KL divergence method using two inverted indices. The body index and the subject index store
the term to document ID (and its associated document statistics) for the body text and subject text
respectively. The last component, the document model for the author A, involves the assumption
that the author is represented by all the documents that he/she has written before. The author's
relevance depends on the query, since di�erent authors are experts on di�erent topics. Essentially,
we would like to get a ranking of the author based on the input query.

Suppose Ad represents the author for the document d, the ranking of the author can be captured
in:

P (Ad|Q) =
P (Q|Ad)P (Ad)

P (Q)
∝ P (Q|Ad)P (Ad)

3

The term P (Ad|Q) estimates the probability that the author that has written the document d
is an expert to the query Q. For now, we can make the assumption that the P (Ad) is uniform,
although this statistics can also be computed by counting how often the author has posted the on
the newsgroup. Therefore, we only need to use P (Q|Ad) for ranking. We can compute this by using
the simple unigram model:

P (Q|Ad) =
|Q|∏
i=1

P (qi|Ad)

We can use the KL divergence method to compute P (Q|Ad) as well, if we treat the author
model Ad the same as the document model θD described in the previous context. In order to use
the conventional index model, however, we need to treat the set of documents written by Ad as one
combined meta document. For instance, given that we have documents d1, d2, ..., dn in the collection
C, we would like to make a subset SAd

of di ∈ C such that di is written by Ad. We then treat SAd
as

one large document used for indexing. The document ID, in this case, would be an unique identi�er
for the author Ad. In our case we use the message poster's email address as the meta document's
ID.

A heuristic way is used to combine the �nal score for ranking. First, each document is scored
and ranked based on the KL divergence method. For the general index, we essentially acquire a
ranked list of documents G = {(G1, g1), (G2, g2)...(Gn, gn)} such that Gi is the ith highest ranked
document and gi is its associated score. We then do the similar thing for the subject index, where
S = {(S1, s1), ..., (Sksk)}. Finally, we apply the same method on the author index such that
A = {(A1, a1), (A2, a2), ..., (Am, am)}. Ai is an individual author and ai represents the associated
score for the �insightfulness� of the author base on the query.

After we have calculated G, A, and S using the KL divergence method, we discard the scores gi,
ai, and si for all i. Instead, we use the ranking of the document d and the ranking of Ad to generate
a new score for d. In other words, if for a document d such that d = Gl, d = Sr, and Ad = At(d
is ranked lth for the the body, rth for the subject, and its author is ranked tth for the given query),
the new score of d is:

s(d) = α1weight(d,G) + α2weight(d, S) + α3weight(Ad, A)

where:

weight(d,G) =
{ 1

l if d is in G
1

|G| otherwise

weight(d, S) =
{ 1

r if d is in S
1

|S| otherwise

weight(Ad, A) =
{ 1

t if Ad is in A
1

|A| otherwise

The α1, α2, α3 are mass constants associated with each component. Di�erent values are set in our
experiment to show varying retrieval performance.

4 Conversation Extraction and Evaluation Service

The high level goal for CEES (Conversation Extraction and Evaluation Service) is to help user
search for answers to their questions better. This capability is especially important in a technical

4

mailing list, where frequently asked questions (FAQ) are being repeatedly asked by many newcomers
everyday.

In a nutshell, CEES serves three primary functions:

1. Collection of messages

2. Archiving the messages

3. Extract, evaluate, and retrieve the stored messages

From Figure 1 we can see how CEES collect the messages and archive them in the database. There
are 4 main components of the system:

NNTP

Server

Message Collector

Mailing List

Archive

Message Consumer

RDBMS Database
 Indexer
 Inverted Index

Retrieval Engine

SOAP Interface

CeesCrawler

Ceeserver

Incoming

Mail

CeesIndexer

Indices

CeesGUI

Web GUI

Figure 1: High-Level CEES Architecture

1. CeesCrawler consists of two main subparts:

(a) MessageCollector collects the messages from either a NNTP server or a mailing list
archive �le in the standard Unix mbox format. Future implementation can potentially
feed in incoming mail from an SMTP (Simple Mail Transfer Protocol) server.

(b) MessageConsumer will take input from the MessageCollector and insert them into the
RDBMS. The back-end database we used is PostgreSQL.

2. CeesIndexer reads from the messages stored in the RDBMS and index the messages into body,
subject, and the author index. The indexer creates the body and subject indices in one pass.
For the author index, the indexer queries the SQL database to generate the meta document for
each author. It then index the meta document with the author email as the meta document's
ID.

5

3. The Ceeserver consists of a retrieval engine and the SOAP (Simple Object Access Protocol)
interface that serves as the external interface to CEES. The engine takes in user queries,
performs the necessary procedures for retrieval, and returns the results through SOAP.

4. The front-end web interface uses the Ceeserver with SOAP calls and display the results to the
user through HTTP/HTML.

Figure 2: CEES Interface

Figure 3: Searching for Experts

6

One can see the retrieval interface in Figure 2 and Figure 3. As a side e�ect of the author index,
user can actually look for experts in the group that �knows� the most about the query. This is done
by clicking on the �Search for Expert� button. The results you see in Figure 3 is simply a ranking
of the author index A in the previous section. The users can potentially pay more attention to the
people who knows the most about the query, or to email the author questions directly.

5 Evaluation and Results

Since there is no tagged data that we can use for evaluating the performance of the CEES system,
a reference set is constructed from the Tomcat (http://jakarta.apache.org/tomcat) user mailing
list. In particular, an archive for the month of May, 2003 is taken for this purpose. It contains
3719 messages from 772 authors. Twenty-three topics are taken from the messages, queries are
constructed based on the original questions asked by real users from the mailing list.

An control set uses the body index and the KL divergence retrieval model. The Dirichlet prior
µ is set to 2000 and 1000 documents are retrieved for each query. No pseudo feedback for the query
is used. For the �rst run, α2 is set to 0 and we vary the parameter for α3. The result is shown in
Figure 4 and Figure 5.

 0.36

 0.365

 0.37

 0.375

 0.38

 0.385

 0.39

 0.395

 0.4

 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

 P
re

ci
si

on

alpha3 (author weight)

Precision and Author Weight

tomacat-may-2003

Figure 4: Performance of CEES

If we set α3 to 0 and vary the subject constant α2, we get the performance in Figure 6. Es-
sentially, the performance peeks when α2 is set to 0.05. It then rises again when α2 is set to 0.2.
The precision and recall in Figure 7 also shows that there is not much of a performance gain when
altering the subject weight.

After all, there is not much of a di�erence between the baseline model and our new model.
There is a minor improvement on the average precision if α3 is set to 0.02. The performance
degrade sharply for we overweighted the author importance if α3 is set to anything above 0.1. This
shows that the heuristic method we used is probably not ideal. We expect a di�erent method
to combine the three indices and automatic tuning of the parameters will improve the retrieval
performance.

7

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

recall

Precision and Recall

alpha1 = 0.98, alpha2 = 0, alpha3 = 0.02
alpha1 = 0.95, alpha2 = 0, alpha3 = 0.05

alpha1 = 0.9, alpha2 = 0, alpha3 = 0.1
alpha1 = 0.85, alpha2 = 0, alpha3 = 0.15

alpha1 = 1, alpha2 = 0, alpha3 = 0

Figure 5: Precision and Recall for Author Weight

 0.36

 0.365

 0.37

 0.375

 0.38

 0.385

 0.39

 0.395

 0.4

 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

 P
re

ci
si

on

alpha2 (subject weight)

Precision and the Subject Weight

tomacat-may-2003

Figure 6: CEES Performance Using the Subject Parameter

6 Future work

There are much to be done in order to really see whether the author-oriented model can signi�cantly
improves the insightfulness of the retrieval.

First of all, the current way to combine the score does not take advantage of the value of the
score. It's also very computationally intensive since it needs �nd each document in two other ranked
list in order to calculate the score. A better way is to use the method suggested by Ogilvie [5].
Ogilvie proposes a method to combine various representations of the document using a variation of

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Precision and Recall

alpha1 = 0.98, alpha2 = 0.02, alpha3 = 0
alpha1 = 0.95, alpha2 = 0.05, alpha3 = 0

alpha1 = 0.9, alpha2 = 0.1, alpha3 = 0
alpha1 = 0.85, alpha2 = 0.15, alpha3 = 0

alpha1 = 1, alpha2 = 0, alpha3 = 0

Figure 7: Precision and Recall for Subject Weight

Dirichlet prior. In particular, suppose {θD(1), θD(2), ..., θD(k)} are the representations of θD, then:

P (qi|θD) =
k∑

j=1

λjP (qi|θD(j))

We also put constraint on λj such that
∑k

j=1 λj = 1 and λj ≥ 0 for 1 ≤ j ≤ k.
In an author-oriented model, θD consists of three representations:

1. The document body, denoted by D

2. The author of the document D, which is represented by AD

3. The background model from the normal case of Dirichlet prior, denoted by C.

Note that one can include the author representation be part of D. In the traditional case with
Dirichlet smoothing, we use the can express P (qi|θD) as:

P (qi|θD) = λ1P (qi|D,AD) + λ2P (qi|C)

Where λ1 = |D|
|D|+µ and λ2 = µ

|D|+µ . If we add our author model, we would have:

P (qi|θD) = αλ1P (qi|D) + (1− α)λ1P (qi|AD) + λ2P (qi|C)

One should notice that 0 ≤ α ≤ 1 is a parameter to weight between the document representation
and the author representation. Eventually, it would be ideal to estimate the α and λj automatically
using the two-stage model proposed by Zhai and La�erty[10].

Secondly, a better test set should be constructed in order to show di�erent level of �insightful-
ness.� Essentially, a CEES user would only need to look the top few posts in order to �nd the
�insightful� entry that satisfy the information need. This is not shown in our setup, since we only
tag whether a message is relevant to the query. Ideally, we should also tag a message as �highly�

9

relevant, which provides the user with the exact answer, or just �relevant�, which the message only
leads to a conversation that the user may be interested in.

Furthermore, more interesting work can be done in the user interface area. Showing the related
messages by a highly ranked author may prove to be useful to the user of the system. It would
also be desirable to cluster similar conversations automatically to generate a collection of frequently
posted messages. The clusters would then give new users an quick summary of the mailing list. The
users can then would have an overview on what questions have been asked before.

References

[1] Peter Eklund and Richard Cole. Structured Ontology and Information Retrieval for Email
Search and Discovery. 2002.

[2] Djoerd Hiemstra. Term-Speci�c Smoothing for the Language Modeling Approach to Informa-
tion Retrieval: The Importance of a Query Term. 2002.

[3] Rong Jin, Alex G. Hauptmann, and ChengXiang Zhai. Title Language Model for Information
Retrieval. 2002.

[4] John La�erty and ChengXiang Zhai. Document Language Models, Query Models, and Risk
Minization for Information Retrieval. 2001.

[5] Paul Ogilvie and Jamie Callan. Combining Document Representations for Known-Item Search.
2003.

[6] Marc A Smith and Andrew T Fiore. Visualization Components for Persistent Conversations.

[7] Fei Song and W. Bruce Croft. A General Language Model for Information Retrieval. 1999.

[8] Chengxiang Zhai and John La�erty. A Study of Smoothing Methods for Language Models Ap-
plied to Ad Hoc Information Retrieval. In Research and Development in Information Retrieval,
pages 334�342, 2001.

[9] ChengXiang Zhai and John La�erty. Model-based Feedback in the Language Modeling Ap-
proach to Information Retrieval. 2001.

[10] ChengXiang Zhai and John La�erty. Two-Stage Language Models for Information Retrieval.
2002.

10

