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1 Introduction

This paper describes a question-answering system using a combination of ideas from [1], [3], and
[8], in addition to our own refinements to some advanced techniques described in [2], [6], and [9].

Our contribution in this paper includes: (1) a design of an extensible story comprehension
architecture, (2) a richer and more unified story comprehension dataset than the one used in [3],
and (3) a technique to integrate advanced scoring functions using training examples and linear
regression.

We have performed evaluation and analysis of this system on the dataset that we have enhanced
from [3]. Level 2 and 5 are used as training set, and level 3 and 4 are used for test set. On level 3
and 4, we have achieved an accuracy of 42.27%, comparing to our baseline system’s 39.25%. The
combined average accuracy for all four levels is 49.02%.

2 System Architecture

The enhanced Bag of Word (BOW) approach, as described in [4], has shown to be extensible to
the new features that we would like to implement in [2], [6] and [9]

Figure 1 shows the modified architecture that we have used in this paper. On top of the feature
sets in [4], we have added the following:

1. An Expected Answer Filter that tries to match the expected answer for a question to the
sentence type

2. A trainable composite ranking function that has the ability to train its weights on combination
of scorers

3. Implementation of eight different scorers that can be used in the composite ranking function
in any combination

4. Additional scorers using Okapi, tree edit-distance, and expected answer.

Here is an overview of the system flow:
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1. Our data preprocessing module would parse from the original data set and construct a multi-
column format used internally in our system.

2. For each story, we would construct sentence models and question models. In our case, our
model consists of a BOW representation and the unmodified original attributes that tagged
each word.

3. The models are then passed to the filters. See Section 3 for more details on filters.

4. The system then passes the filtered question and sentence models to a trained composite
ranking function. Given a question, the ranking function will sort the sentences by their
relevance based on several scorers. Section 4 describes this trained ranking function and
scorers.

5. With the ranked list of sentences, the Postprocessing module then picks the most likely
answer. In some question-specific rules, the sentence with the best score may not be the
optimal one to pick.

6. The Evaluation module would match generated answers with real answers and returns the
final results.

Filters

Original Dataset

Sentence models Question models

Modified sentence models Modified sentence models

Named Entity Filter

Stemming Filter

Stopword Filter

Pronoun Filter

Question Specific Filter

Expected Answer Filter

Trained Composite Sentence Ranking Function

Postprocessing

Sentence Filters Question Filters

Pick Answer

Figure 1: A Modular Story-Comprehension System Architecture

3 Filters

The filters are modifiers to the sentence and question BOW models as described in Section 2. Based
on the tagged information such as as name for each sentence, different filters can eliminate words
in the bag, add special tokens with given weight, or merge two tokens together.



3 FILTERS 3

We have implemented the following filters.

3.1 Pronoun Coreference Filter

Of course, a necessity for our question answering system is the ability to make sense out of pronoun
references. We are fortunate enough to have pronoun coreference information provided to us by
the MITRE corporation. The data comes in an xml format associating an identification id along
with a reference id for each entity in the story. How exactly to take advantage of this information,
though, is not particularly clear. Three out of the five systems cited in [1] make use of pronoun
coreference information, but the paper fails to list any implementation specifics.

We make use of this information by adding all such identification numbers to our question and
answer bags. Essentially, the identification numbers are treated just like other words, such that
sentences making a reference to the same entities as a particular question will be scored higher,
just as sentences sharing words with the question would.

3.2 Named Entity Filter

Named entity data is also provided by the MITRE corp. Entities are tagged as one of person,
location, or organization. The named entity filter adds to each of the question and answer bags
special tags indicating when entity data of a specific type is in a sentence. This way, sentences that
contain the same type of entity information as is referred to in the question will receive a bonus by
the scoring module. In addition, the question specific filter contains rules which are based on the
presence on certain named entity data in the question and answer sentences.

3.3 Stopword Filter

In compliance with the Brown paper [1], we have used the same stopword classes. The stopword
filters, when turned on, will filter out the following words from both the question and sentence
BOW:

be am is are were was
have had
do did done
and or to in at of a
the this that which

3.4 Stemming Filter

Stemming has shown to improve the performance in [3], [8], and [1]. Since we were unable to get
Steven Abney’s stemmer, as used in [3], to work properly, we settle for the simple Porter stemmer
[5] instead. We use the default Martin Porter’s Perl implementation in our experiments. The
stemmer filter applies stemming on both question and sentence BOW.

3.5 Question-Specific Filters

For the implementation of question-specific rules, we more or less followed the proposed rules of the
Utah system [8] and adapted them to our modular architecture. Thus, we have the Question-Specific
Filter, to process the question and answer bags, adding special tags corresponding to individual
question specific rules, and the Question-Specific Scorer to recognize and assign an overall score
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based on these weights. Descriptions of the specific rules, and some implementation details can be
found in the Question-Specific Scorer section.

3.6 Expected Answer Filter

The expected answer filter makes use of additional data provided by the Cognitive Computation
Group (CogComp in the sequel) at UIUC. This data indicates for each question one or more
expected answer types depending on the question structure. These types can for example be
”location”, ”person”, ”description”, ”entity” etc. In addition, these categories were organized in a
hierarchical manner, i.e. each main category had several subcategories associated with it.

Also, the candidate answer sentences were tagged with more fine-grained named entity tags,
using a software provided by CogComp. Unfortunately, the question-classification tags and the
named entity tags were disjoint, i.e. they used different hierarchies and ontologies.

Our approach therefore was to learn correlations between these tags by looking at the correct
answer sentences in stories at levels 2 and 5. For each pair of type < q, n >, where q is a question-
specific tag and n is a named entity tag, we count the number of occurrences in the correct answer
sentences of levels 2 and 5.

In section 4, we explain how these statistics were used to assign scores to each sentence during
testing.

4 Scorers

Scorers are used to score each sentence for ranking. We have implemented several scorers in our
project.

4.1 Baseline Scorers

For our baseline system [4], we have implemented two scorers: the bag of word (BOW) scorer used
by DeepRead [3] and the TF/IDF (term frequency/inverse document frequency) scorer described
in [1].

Given the vocabulary W = {w1, ..., wn}, we define the bag of word for the sentence as a set
S such that S = {s1, s2, ..., sn}, where sm represents the frequency for word wm in the sentence.
Similarly, we define BOW of question as Q = {q1, ..., qn} , where qn represents the frequency for
word wm in the question. We then can define the size of the intersection and union between S and
Q as

|Q ∩ S| =
n∑

i=1

min(si, qi)

|Q ∪ S| =
n∑

i=1

si + qi

. Given the union and the intersection, we define the scoring function for BOW as

scoreBOW (Q,S) =
|Q ∩ S|
|Q ∪ S|

.
For the TF/IDF scorer, let tf(w,S) be the term frequency for w in sentence model S and

df(w,B) be the the count of sentences in the background model B that contains the term w. It
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is worth nothing that the background model B, in our case, represents one particular story. In
addition, let wi be the ith term in the sentence S. The scoring function then becomes

scoreTFIDF (Q,S, B) =
n∑

i=1,tf(wi,Q) 6=0

tf(wi, S)
df(wi, B)

. Essentially, this is the same as giving a weight for each word so its score will be discounted if
it appears very often in the story.

4.2 Trained Composite Ranking Function

The baseline scorers contain hand-tuned parameters for adding scores for various features such as
pronoun coreference, named entities, and question specific rules. Those metrics generally return
scores with different weights. Therefore, there is no systematic way to combine the scores.

Harabagiu [2] describes an approach to accurately retrieve the most relevant paragraphs using
a Perceptron-trained function. The training problem is first set up as training an comparator
function that tests the relevance for two sentence models S1 and S2 given the question model Q.
Intuitively, the problem can be thought of training a function like:

moreRelevant(S1, S2, Q) =

{
1 if S1 is more relevant than S2 given Q
−1 otherwise

. Like Harabagiu, if each scorer i has a scoring function scorei and a weight wi, we can use a
linear equation to combine the scores for different scorers:

f(S1, S2, Q) =
∑

i

wi(scorei(S1, Q)− scorei(S2, Q))

We then use f(S1, S2, Q) in our comparator function moreRelevant():

moreRelevant(S1, S2, Q) =

{
1 if f(S1, S2, Q) > 0
−1 otherwise

We have modified this approach to fit the context of our story comprehension system (Figure
2). It is important to note that Harabagiu’s features are simple word matching counts. We have
built and used more sophisticated scorers as the basis for the composite ranking function.

We have reimplemented the scorers used in our baseline system so they work in the new system.
The old scorers include the BOWScorer, TFIDFScorer, NamedEntityScorer, PronounScorer, and
QuestionSpecificScorer. BOWScorer and TFIDFScorer are the same as the baseline scorer. We
have enhanced the NamedEntityScorer and PronounScorer. See Section 4.2.1.

We use the corpus for level 2 and 5 for training. For each story in those levels, we create training
examples in the form (Y, S1, S2, Q) for all combinations of (S1, S2, Q) in the story.

For each triplet (S1, S2, Q), Y = 1 if S1 is the answer to question Q, and Y = −1 otherwise.
We then convert (Y, S1, S2, Q) into f . We can do so by running the scoring function for each

scorer on (S1, Q) and (S2, Q) in order to calculate delta in the linear equation.
Finally, we feed the examples to a linear regression engine and learned the weight wi for each

scorer.
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Modified
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Figure 2: Trained Composite Ranking Function

4.2.1 NamedEntityScorer and PronounScorer

We have also changed the NamedEntityScorer and PronounScorer to follow the TFIDF scheme.
We downweight the named entities or pronoun references if they appear in many sentences. More
specifically, if we define function tw(tag, S) be the term weight function that returns the sum of all
the tag’s weight (the tag can be either a named entity or a pronoun reference), we can derive the
scoring functions as:

scorenamedentity(Q,S, B) =
n∑

i=1,tw(ni,Q) 6=0

tf(ni, S)
df(ni, B)

scorepronoun(Q,S, B) =
n∑

i=1,tw(pi,Q) 6=0

tf(pi, S)
df(pi, B)

4.2.2 Okapi Scorer

Borrowing from the traditional Information Retrieval model, the Okapi formula has been used suc-
cessfully in document retrieval. Okapi has the advantage in incorporating the length normalization
and the query frequency factor on top of the traditional TFIDF model. In our context, we treat
each sentence as a document and a story as a collection of document. Thus, the formula is given
as:

scoreokapi(Q,S, B) =
n∑

i=1,tf(wi,Q) 6=0

(k1 + 1)tf(wi, S)

k1((1− b) + b len(S)
avsl(B))

· (k3 + 1)tf(wi, Q)
k3tf(wi, Q)

· ln (N − df(wi, B) + 0.5)
df(wi, B) + 0.5

where:

• len(S) is the length of the sentence S, and avsl is the average sentence length for the back-
ground model.

• The k1, b, and k3 are Okapi constants. Initial tweaking indicates the values of k1 = 1.1,b = 0.3,
and k3 = 0 (not making any bias toward the the query frequency) seem to work best.
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4.2.3 Question-Specific Scorer

Due to the differences in flow of control of ours and the Utah system, we were unable to use a few
specific rules. The following subsections provide a detailed explanation of the rules that we used,
and also mention which rules could not be implemented within our system.

Before a question-specific filter can be applied, one obviously first needs to figure out which
type of question the current question sentence belongs to. Due to the nature of the questions
though, this is almost trivial, since the first word of the question sentence indicated its type with
100% accuracy. After determining the type of question, the sentence is then passed on to the filter
associated with this question type.

In general, these filters look at the question sentence and each sentence in the story and check
whether a certain predicate is true (e.g. ”The question contains a MONTH and the sentence
contains either today, yesterday, tomorrow, or last night”). If it is true, a certain number of points
is added to the overall score of the sentence, depending on the importance of the predicate. Points
are discretized into 4 levels: clue (+3), good clue (+4), confident (+6) and slam dunk (+20).
These discretization levels were also adapted from the Utah system. A possible improvement for
the next part of this project would be to learn these weights from training data.

For almost all question types, the Utah system starts off by assigning points to sentences
according to a WordMatch function. In the implementation of the question specific rules filter, we
completely ignored this rule. As other parts of the system are based on these word matches, and
we get the same effect using this different approach.

WHERE questions
The simplicity of the WHERE rules seems to imply that this should be one of the easiest

question types to answer. The Utah system only uses two basic rules:

1. If the sentence contains a location preposition (such as ”in”, ”at” or ”near”), then a good
clue score is added to the total score of the sentence.

2. If a sentence contains a LOCATION (the Utah system uses a predefined list of locations, we
use the available named entity data), then a score of confident is added to the total score
of the sentence.

Implementation of these two rules in our system is straightforward. For rule 1, we define a list
of location prepositions (since the Utah system did not specify the entire list, we came up with our
own). For each of these prepositions, we check whether it is in the question bag. If yes, we add a
good clue score to the word. If it doesn’t exist in the bag yet, we add it to the bag and initialize
it with good clue score. Similarly for rule 2, where we use a special tag ”:QS:NE:LOCATION:”
which is then added to the bag. Then, sentences that are found to have Location information
according to our named entity data are given a score of confident.

WHO questions
The rules for the WHO questions are as follows:

1. If the question does not contain a name and the sentence does contain a name, then it gets
a score of confident.

This rule was implemented using the same approach as for most other rules: Check if the
question bag contains a name (indicated by NE tag). If it doesn’t, then add the special tag
”QS:NE:PERSON” to the bag and initialize it with a score of confident.
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2. If the question does not contain a name and the sentence contains the word ”name” then it
gets a score of good clue.

The implementation of this rule is analogous to the one above.

3. If the sentence contains either a name or the reference to a person (e.g. an occupation such
as ”writer”), then it gets a score of good clue.

As we don’t explicitly have the list of human related words that the Utah system authors
had, we check WordNet to find if any words in the sentence are a descendant of ”HUMAN”
sense as defined by WordNet. If so, the sentence is given the bonus points associated with
good clue.

WHAT questions
These are the rules used for WHAT questions by the Utah system:

1. If the question contains a MONTH expression (the 12 months of the year) and the sentence
contains today, yesterday, tomorrow, or last night, then a good clue score is added to the
sentence.

We implemented this rule by checking for each MONTH expression whether it existed in the
question. If it did, we checked for each of the above mentioned words whether they existed
in the question bag. If they did, we added a good clue score to them, otherwise we added
them and initialized them with the same score.

2. If the question contains the word ”kind” and the sentence contains either ”call” or ”from”,
the score of the sentence is increased by good clue. If the question contains the word ”name”
and the sentence contains either ”name”, ”call”, or ”known”, a slam dunk score is added to
the sentence.

We implemented these rules by checking for the existence of the respective words in the
question bag and then adding the respective score to the sentence words in the question bag.

3. If the question contains a phrase like ”name of ¡x¿” and the sentence contains a proper noun
whose head noun matches with ”¡x¿”, the sentence is awarded an additional score of slam
dunk.

We were unable to implement this rule since we did not have PP attachment data available.

WHEN questions
For the WHEN questions, the Utah system only applies the general word match filter if the

sentence contains a TIME expression, where TIME expressions are years from years from 1400-
1999, the 12 months of the year, and some more unspecified ones. Since we did not have a similar
list of time expressions available, we modified this rule to apply in all cases, regardless of whether
the sentence contained such an expression or not.

The remaining rules for the WHEN questions are:

1. If the question contains the string ”the last” and the sentence contains either ”first”, ”last”,
”since”, or ”ago”, then it is assigned a score of slam dunk.

2. Similarly, if the question contains either ”start” or ”begin” and the sentence contains either
”start”, ”begin”, ”since”, or ”year” then it is assigned a score of slam dunk.
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The implementation of these rules is analogous to the implementations for other types of ques-
tions as described above.

WHY questions
WHY questions are handled differently in the Utah system. Instead of just assigning points

to each sentence in one iteration, the system first performs a pure word match scoring and then
isolates the best x sentences according to this score. Referring to this set of sentences as BEST,
the following rules are then applied to all sentences in the story:

• If a sentence is in BEST, assign it a score of clue.

• If a sentence immediately precedes a sentence in BEST, assign it a score of clue.

• If a sentence immediately follows a member of BEST, assign a score of good clue.

• If the sentence contains ”want”, then increment its score by good clue.

• If the sentence contains either ”so” or ”because”, then increment its score by good clue.

Due to the two iterations, this algorithm didn’t fit well into our architecture and so we had
to tweak it a bit to make this work. First we apply the scoring module as usual to associate a
score with each question. From there, the rest of these rules are implemented in the postprocessing
module. In the next phase of this project, we might think of a cleaner approach to WHY questions.

Dateline rules
As explained in the Utah paper, the dateline often contains the answer to WHERE or WHEN

questions, so we need to take it into account for these types of questions as well.
Following the Utah system, we implemented the following rules:

1. If the question contains the word ”happen”, then the dateline’s score is incremented by good
clue.

2. If the question contains both ”take” and ”place” then the dateline’s score is incremented by
good clue.

3. If the question contains ”this”, then the dateline’s score is incremented by slam dunk.

4. If the question contains ”story”, then the dateline’s score is incremented by slam dunk.

Implementation of these rules follows the general pattern described above. A special tag is
added to the questions and dateline bags, such that if any of these conditions are satisfied, the
scorer will assign to the dateline the corresponding number of points. In the current version of
the data, it should be noted that the dateline is not separated from the first sentence of the story,
potentially enhancing results a small amount.

4.2.4 Expected Answer Scorer

As mentioned in the Expected Answer Filter section, each question has an associated set of expected
answer types, and each potential answer has associated a set of named entity types. The goal of
the Question Type Scorer is to assign high scores to sentences that contain the same named entity
types as would be expected based on the question’s set of expected answer types. Precisely, we
wish to assign to each sentence a score based on the log likelihood that this sentence answers a
question with the prescribed set of expected answers. Let QC denote a boolean vector indicating
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the presence and absence of each expected answer type within the question, and let NE denote a
similar vector indicating the named entity types that appear in the potential answer sentence, we
assign to the candidate answer the score:

S = log p(QC|NE) (1)

By Bayes rule, this equals,

S = log
p(NE|QC) ∗ p(QC)

p(NE)
(2)

p(QC) is constant over all candidate answers, and thus,

S − log p(QC) = S′ = log
p(NE|QC)

p(NE)
(3)

Making the assumption that the named entity data is independent given the set of question
classes,

S′ = log
∏

n∈NE

p(n)|QC)
p(n)

=
∑

n∈NE

log
p(n|QC)

p(n)
(4)

If we make the assumption that the question classes occur independently, both unconditionally,
and conditioned on the presence or absence of any one named entity type, several applications of
Bayes rule yields,

S′ =
∑

n∈NE

((
∑

q∈QC

log
p(n|q)
p(n)

) + log p(n)) (5)

S′ ∑
n∈NE

((
∑

q∈QC

log p(n|q))− (log p(n))|QC|−1) (6)

Statistics to approximate both of the probabilities, p(n|q) and p(n) are gathered by our Expected
Answer Filter, and thus a score is assigned to each question, candidate answer pair.

4.2.5 Tree Scorer

The baseline scores, both the BOW scorer and the TF/IDF scorer, focus on exploiting seman-
tic information like pronoun coreferences and named entities. However, we can also exploit the
syntactic information. For example, assume that we have a following question that “Who lives in
Greenland?”(Story2-20) The correct answer is “Eskimos live in Greenland,” which has the exactly
same sentence structure as the question. To exploit this structural information, we implemented a
tree scorer based on [7].

This scorer exploits both syntactic and semantic information. The scorer is implemented in
three phases. First, we transformed the given column-format data into the tree-format data based
on the dependency graphs. Then, we implemented the basic tree matching algorithm described in
[7]. Finally, we introduced a new heuristic to add more semantic information.
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The preprocessing is the most expensive part in this scorer. First, we transformed the given fdg
data into our column-format. There were some inconsistencies between these two column-formats.
Since we splitted some words or combined them, the given dependency graph indices were screwed
up. We checked every dependency graph index and made sure that it is reasonable and has one
root, which is the main verb. Then, we constructed dependency trees based on these modified
graphs. However, we have found that sometimes the original dependency graphs are not correct.
In this case, if there were certain corrections, we corrected them manually. But, if there were not,
we just leave them as they were. Because of this, we cannot guarantee that the tree scorer will
show its optimal performance.

To match a question only with parts of the story sentence, the tree edit distance was introduced
as a distance measure for matching between the tree representations. We achieved this by employing
an approximate tree matching approach in ([7]).

Following [7], we consider ordered labeled trees in which each node is labeled by some informa-
tion and the order from left to right of its children is important. There are three operations that
can transform an ordered labeled tree to another: deleting a node, inserting a node, and changing
a node.

The associated cost for each operation is mainly following the definition in [7], and new heuristic
is tried in our implementation to use more semantic information, which will be explained later.

Our Tree Scorer returned the score of each question-sentence-pair by negating the minimum cost
sequence of operations from among those that can be used to map the question tree into sentence
tree. We use the SUBTREE REMOVAL algorithm developed in Zhang and Shasha ([10]), which
is an efficient dynamic programming based algorithm. Since in our experiments we didn’t restrict
the cost function to satisfy the triangularity property, the modification introduced in [7] was used
to compute the approximate tree matching cost.

Because the structure of a sentence might be quite different from that of a question, for each
question, we flipped the first child, which was usually the question word (who, when, where, what,
why), with the rest of the other children, and took the minimum cost of tree matching with or
without flipping.

We also tried to use the information from the question classifier and named-entity provide. The
statistics from the Expected Answer Filter was used to measure the match between the question
type and the expected name entity for that type. Currently, for each question, both the main
category and subcategories for its classified type were looked up in the statistics table. This is
done so it can get the maximum probability for matching the named entity of the node in the story
sentence tree.

The following is the definition of our cost functions:

1. delete:

• if a is a stop word, γ(a → Λ) = 5

• else γ(a → Λ) = 200

2. insert:

• if a is a stop word, γ(Λ → a) = 5

• else γ(Λ → a) = 200

3. change:

• if a is a question word,
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– if a is ”who” and b has named entity ”PERSON”, γ(a → b) = 5
– else if a is ”where” and b has named entity ”LOCATION”, γ(a → b) = 5.
– else if a is ”when” and b has named entity ”DATE”/”TIME”, γ(a → b) = 5
– else

∗ get the maximum probability p(a, b) of seeing expected question class for a and
named entity for b

∗ γ(a → b) = 200− 100 ∗ p(a, b)

• else

– if word a is identical to word b, γ(a → b) = 0
∗ if a is the main verb, γ(a → b) = −100
∗ else γ(a → b) = 1

– else if a and b have the same stemmed form
∗ if a is the main verb, γ(a → b) = −99
∗ else γ(a → b) = 1

– else γ(a → b) = 200

According to our observation, we noticed that the structure of the sentences in the story is
usually simple. In addition, the shorter the sentence is, the less it will take advantage of the
approximate tree matching approach. However, generally the main verb of the question is the same
as the answer. So we gave extra score for the matching of the main verb between the question and
the story sentence, which is implemented as less cost for the change operation in the cost function.
The experiments on using tree scorer only actually indicated the advantage of this heuristic. For
example, for the overall performance on level 3, we achieved 0.34 accuracy without using question
type classification and the verb-match heuristic, and climbed to 0.37 and 0.36 with using either
question type classification or the verb-match heuristic, got 0.39 finally with using both of them.

5 Evaluation and Results

We have run our system on all four grade levels. We reported on the baseline performance in our
previous report [4] with various filters turned off and on.

In this paper, we would like to experiment with different combinations of scorers and how they
can affect the overall performance. All the filters described in 3 are turned on for each experiment.

We report how often the program answers a question by choosing a correct sentence as judged
in the answer mark-ups. This is known as HumSent (human annotated sentence). If a question
does not have a correct sentences, we ignore that question. Thus, we do not consider the “no
answer” case.

We have experimented with the following scorers:
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Scorer ID Meaning
BASELINE The baseline case in our previous experiment,

where TFIDF is used with stemming, stop-
words removal, question specific rules, and the
named entity filter

TF TFIDFScorer
Qu QuestionSpecificScorer
Pr PronounScorer
Na NamedEntityScorer
BO BOWScorer (Bag of Words)
Ok OkapiScorer
Ex ExpectedAnswerScorer
Tr TreeScorer

For each combination of the scorers, we first train the weights for the composite ranking function
using level 2 and 5. we then run the experiment on all 4 levels. The result you see below are the
top 10 combinations of scorers on the average score of level 3 and 4 (Avg34). That average score is
calculated by adding the accuracy of the two levels together and divided by 2. Thus, this number
may be different than the number of questions the system gets correctly divided by the total number
of questions that we have answered.

The Avg is the average result of all 4 levels, it is calculated by summing the accuracy of the 4
levels and divided by 4.

The Avg25 is the average result of level 2 and 5, it is calculated in the same way.
The number (n/m) in each cell indicates the number of questions we get right (n) over the

number of questions we answered (m). Our system answers all the questions.
The baseline performance is given below each of the table. In some cases, the baseline configu-

ration actually is one of the top 10 configuration. In such case, it is shown twice.
Here are the overall results:
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Scorers level2 level3 level4 level5 Avg Avg25 Avg34
TFQuNaBOEx 53.08%

(69/130)
42.22%
(57/135)

42.31%
(55/130)

58.46%
(38/65)

49.02%
(219/460)

55.77%
(107/195)

42.26%
(112/265)

TFQuPrNaBOOkExTr 51.54%
(67/130)

42.22%
(57/135)

42.31%
(55/130)

60.00%
(39/65)

49.02%
(218/460)

55.77%
(106/195)

42.26%
(112/265)

TFQuBOEx 52.31%
(68/130)

42.22%
(57/135)

40.77%
(53/130)

58.46%
(38/65)

48.44%
(216/460)

55.38%
(106/195)

41.50%
(110/265)

TFNaBO 48.46%
(63/130)

44.44%
(60/135)

37.69%
(49/130)

49.23%
(32/65)

44.96%
(204/460)

48.85%
(95/195)

41.07%
(109/265)

BOOkEx 48.46%
(63/130)

40.74%
(55/135)

40.77%
(53/130)

53.85%
(35/65)

45.95%
(206/460)

51.15%
(98/195)

40.75%
(108/265)

QuOkEx 48.46%
(63/130)

40.74%
(55/135)

40.77%
(53/130)

53.85%
(35/65)

45.95%
(206/460)

51.15%
(98/195)

40.75%
(108/265)

TFBOEx 52.31%
(68/130)

42.22%
(57/135)

39.23%
(51/130)

55.38%
(36/65)

47.29%
(212/460)

53.85%
(104/195)

40.73%
(108/265)

QuBOOkEx 48.46%
(63/130)

42.96%
(58/135)

38.46%
(50/130)

55.38%
(36/65)

46.32%
(207/460)

51.92%
(99/195)

40.71%
(108/265)

TFQuBOOkEx 48.46%
(63/130)

42.96%
(58/135)

38.46%
(50/130)

55.38%
(36/65)

46.32%
(207/460)

51.92%
(99/195)

40.71%
(108/265)

TFBO 47.69%
(62/130)

44.44%
(60/135)

36.92%
(48/130)

49.23%
(32/65)

44.57%
(202/460)

48.46%
(94/195)

40.68%
(108/265)

BASELINE 40.77%
(53/130)

39.26%
(53/135)

39.23%
(51/130)

47.69%
(31/65)

41.74%
(188/460)

44.23%
(84/195)

39.25%
(104/265)

For the WHAT question type:

Scorers level2 level3 level4 level5 Avg Avg25 Avg34
TFPr 50.00%

(12/24)
37.93%
(11/29)

37.04%
(10/27)

46.15%
(6/13)

42.78%
(39/93)

48.08%
(18/37)

37.48%
(21/56)

TFPrNa 45.83%
(11/24)

37.93%
(11/29)

37.04%
(10/27)

46.15%
(6/13)

41.74%
(38/93)

45.99%
(17/37)

37.48%
(21/56)

PrNaOk 45.83%
(11/24)

41.38%
(12/29)

33.33%
(9/27)

46.15%
(6/13)

41.67%
(38/93)

45.99%
(17/37)

37.36%
(21/56)

TFPrNaOk 45.83%
(11/24)

41.38%
(12/29)

33.33%
(9/27)

46.15%
(6/13)

41.67%
(38/93)

45.99%
(17/37)

37.36%
(21/56)

TFPrBO 54.17%
(13/24)

37.93%
(11/29)

33.33%
(9/27)

53.85%
(7/13)

44.82%
(40/93)

54.01%
(20/37)

35.63%
(20/56)

TFPrNaBO 54.17%
(13/24)

37.93%
(11/29)

33.33%
(9/27)

53.85%
(7/13)

44.82%
(40/93)

54.01%
(20/37)

35.63%
(20/56)

TFQuPr 50.00%
(12/24)

37.93%
(11/29)

33.33%
(9/27)

53.85%
(7/13)

43.78%
(39/93)

51.92%
(19/37)

35.63%
(20/56)

TFQuPrNa 50.00%
(12/24)

37.93%
(11/29)

33.33%
(9/27)

53.85%
(7/13)

43.78%
(39/93)

51.92%
(19/37)

35.63%
(20/56)

PrBOOk 54.17%
(13/24)

41.38%
(12/29)

29.63%
(8/27)

53.85%
(7/13)

44.76%
(40/93)

54.01%
(20/37)

35.50%
(20/56)

PrNaBOOk 54.17%
(13/24)

41.38%
(12/29)

29.63%
(8/27)

53.85%
(7/13)

44.76%
(40/93)

54.01%
(20/37)

35.50%
(20/56)

BASELINE 54.17%
(13/24)

34.48%
(10/29)

29.63%
(8/27)

61.54%
(8/13)

44.95%
(39/93)

57.85%
(21/37)

32.06%
(18/56)

For the WHERE question type:
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Scorers level2 level3 level4 level5 Avg Avg25 Avg34
QuBOOkEx 37.04%

(10/27)
71.43%
(20/28)

48.00%
(12/25)

66.67%
(10/15)

55.78%
(52/95)

51.85%
(20/42)

59.71%
(32/53)

TFQuBOOkEx 37.04%
(10/27)

71.43%
(20/28)

48.00%
(12/25)

66.67%
(10/15)

55.78%
(52/95)

51.85%
(20/42)

59.71%
(32/53)

QuBOOk 40.74%
(11/27)

71.43%
(20/28)

44.00%
(11/25)

66.67%
(10/15)

55.71%
(52/95)

53.70%
(21/42)

57.71%
(31/53)

TFQuBO 37.04%
(10/27)

71.43%
(20/28)

44.00%
(11/25)

60.00%
(9/15)

53.12%
(50/95)

48.52%
(19/42)

57.71%
(31/53)

TFQuNaBO 37.04%
(10/27)

71.43%
(20/28)

44.00%
(11/25)

60.00%
(9/15)

53.12%
(50/95)

48.52%
(19/42)

57.71%
(31/53)

TFQuPrNaBOOkExTr 40.74%
(11/27)

64.29%
(18/28)

48.00%
(12/25)

66.67%
(10/15)

54.92%
(51/95)

53.70%
(21/42)

56.14%
(30/53)

BOOkEx 40.74%
(11/27)

67.86%
(19/28)

44.00%
(11/25)

60.00%
(9/15)

53.15%
(50/95)

50.37%
(20/42)

55.93%
(30/53)

QuNaBOOkEx 37.04%
(10/27)

67.86%
(19/28)

44.00%
(11/25)

66.67%
(10/15)

53.89%
(50/95)

51.85%
(20/42)

55.93%
(30/53)

QuOkEx 40.74%
(11/27)

67.86%
(19/28)

44.00%
(11/25)

60.00%
(9/15)

53.15%
(50/95)

50.37%
(20/42)

55.93%
(30/53)

TFBOOkEx 40.74%
(11/27)

67.86%
(19/28)

44.00%
(11/25)

66.67%
(10/15)

54.82%
(51/95)

53.70%
(21/42)

55.93%
(30/53)

BASELINE 22.22%
(6/27)

32.14%
(9/28)

32.00%
(8/25)

46.67%
(7/15)

33.26%
(30/95)

34.44%
(13/42)

32.07%
(17/53)

For the WHEN question type:

Scorers level2 level3 level4 level5 Avg Avg25 Avg34
BOOkEx 71.43%

(20/28)
51.85%
(14/27)

69.23%
(18/26)

46.15%
(6/13)

59.67%
(58/94)

58.79%
(26/41)

60.54%
(32/53)

QuOkEx 71.43%
(20/28)

51.85%
(14/27)

69.23%
(18/26)

46.15%
(6/13)

59.67%
(58/94)

58.79%
(26/41)

60.54%
(32/53)

TFBOEx 75.00%
(21/28)

55.56%
(15/27)

65.38%
(17/26)

53.85%
(7/13)

62.45%
(60/94)

64.42%
(28/41)

60.47%
(32/53)

TFNaBOEx 75.00%
(21/28)

55.56%
(15/27)

65.38%
(17/26)

53.85%
(7/13)

62.45%
(60/94)

64.42%
(28/41)

60.47%
(32/53)

TFQuEx 75.00%
(21/28)

55.56%
(15/27)

65.38%
(17/26)

53.85%
(7/13)

62.45%
(60/94)

64.42%
(28/41)

60.47%
(32/53)

TFQuNaEx 75.00%
(21/28)

55.56%
(15/27)

65.38%
(17/26)

53.85%
(7/13)

62.45%
(60/94)

64.42%
(28/41)

60.47%
(32/53)

NaBOOkEx 71.43%
(20/28)

48.15%
(13/27)

69.23%
(18/26)

46.15%
(6/13)

58.74%
(57/94)

58.79%
(26/41)

58.69%
(31/53)

QuNaOkEx 71.43%
(20/28)

48.15%
(13/27)

69.23%
(18/26)

46.15%
(6/13)

58.74%
(57/94)

58.79%
(26/41)

58.69%
(31/53)

TFNaBOOkEx 71.43%
(20/28)

48.15%
(13/27)

69.23%
(18/26)

46.15%
(6/13)

58.74%
(57/94)

58.79%
(26/41)

58.69%
(31/53)

TFQuNaOkEx 71.43%
(20/28)

48.15%
(13/27)

69.23%
(18/26)

46.15%
(6/13)

58.74%
(57/94)

58.79%
(26/41)

58.69%
(31/53)

BASELINE 67.86%
(19/28)

59.26%
(16/27)

53.85%
(14/26)

53.85%
(7/13)

58.70%
(56/94)

60.85%
(26/41)

56.55%
(30/53)

For the WHY question type:
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Scorers level2 level3 level4 level5 Avg Avg25 Avg34
TFNaBOEx 33.33%

(8/24)
18.18%
(4/22)

34.62%
(9/26)

27.27%
(3/11)

28.35%
(24/83)

30.30%
(11/35)

26.40%
(13/48)

TFQuNaBOEx 37.50%
(9/24)

18.18%
(4/22)

34.62%
(9/26)

27.27%
(3/11)

29.39%
(25/83)

32.39%
(12/35)

26.40%
(13/48)

TFQuPrNaBOOkExTr 33.33%
(8/24)

22.73%
(5/22)

26.92%
(7/26)

27.27%
(3/11)

27.56%
(23/83)

30.30%
(11/35)

24.83%
(12/48)

QuNaBOOkEx 37.50%
(9/24)

18.18%
(4/22)

30.77%
(8/26)

27.27%
(3/11)

28.43%
(24/83)

32.39%
(12/35)

24.48%
(12/48)

TFBOEx 33.33%
(8/24)

18.18%
(4/22)

30.77%
(8/26)

27.27%
(3/11)

27.39%
(23/83)

30.30%
(11/35)

24.48%
(12/48)

TFNaBO 37.50%
(9/24)

18.18%
(4/22)

30.77%
(8/26)

27.27%
(3/11)

28.43%
(24/83)

32.39%
(12/35)

24.48%
(12/48)

TFQuBOEx 37.50%
(9/24)

18.18%
(4/22)

30.77%
(8/26)

27.27%
(3/11)

28.43%
(24/83)

32.39%
(12/35)

24.48%
(12/48)

TFNaEx 29.17%
(7/24)

13.64%
(3/22)

34.62%
(9/26)

27.27%
(3/11)

26.17%
(22/83)

28.22%
(10/35)

24.13%
(12/48)

TFQuNaEx 29.17%
(7/24)

13.64%
(3/22)

34.62%
(9/26)

27.27%
(3/11)

26.17%
(22/83)

28.22%
(10/35)

24.13%
(12/48)

BASELINE 25.00%
(6/24)

22.73%
(5/22)

23.08%
(6/26)

18.18%
(2/11)

22.25%
(19/83)

21.59%
(8/35)

22.90%
(11/48)

BASELINE 25.00%
(6/24)

22.73%
(5/22)

23.08%
(6/26)

18.18%
(2/11)

22.25%
(19/83)

21.59%
(8/35)

22.90%
(11/48)

For the WHO question type:

Scorers level2 level3 level4 level5 Avg Avg25 Avg34
QuNaEx 25.93%

(7/27)
44.83%
(13/29)

57.69%
(15/26)

61.54%
(8/13)

47.50%
(43/95)

43.73%
(15/40)

51.26%
(28/55)

BASELINE 33.33%
(9/27)

44.83%
(13/29)

57.69%
(15/26)

53.85%
(7/13)

47.42%
(44/95)

43.59%
(16/40)

51.26%
(28/55)

NaBOEx 29.63%
(8/27)

48.28%
(14/29)

53.85%
(14/26)

69.23%
(9/13)

50.25%
(45/95)

49.43%
(17/40)

51.06%
(28/55)

TFQu 37.04%
(10/27)

55.17%
(16/29)

42.31%
(11/26)

46.15%
(6/13)

45.17%
(43/95)

41.60%
(16/40)

48.74%
(27/55)

TFQuNa 37.04%
(10/27)

55.17%
(16/29)

42.31%
(11/26)

46.15%
(6/13)

45.17%
(43/95)

41.60%
(16/40)

48.74%
(27/55)

NaBO 29.63%
(8/27)

37.93%
(11/29)

57.69%
(15/26)

76.92%
(10/13)

50.54%
(44/95)

53.28%
(18/40)

47.81%
(26/55)

QuEx 29.63%
(8/27)

37.93%
(11/29)

57.69%
(15/26)

53.85%
(7/13)

44.77%
(41/95)

41.74%
(15/40)

47.81%
(26/55)

BOEx 33.33%
(9/27)

41.38%
(12/29)

53.85%
(14/26)

61.54%
(8/13)

47.52%
(43/95)

47.44%
(17/40)

47.61%
(26/55)

QuNaBO 40.74%
(11/27)

48.28%
(14/29)

46.15%
(12/26)

76.92%
(10/13)

53.02%
(47/95)

58.83%
(21/40)

47.21%
(26/55)

BOOk 40.74%
(11/27)

51.72%
(15/29)

42.31%
(11/26)

46.15%
(6/13)

45.23%
(43/95)

43.45%
(17/40)

47.02%
(26/55)

BASELINE 33.33%
(9/27)

44.83%
(13/29)

57.69%
(15/26)

53.85%
(7/13)

47.42%
(44/95)

43.59%
(16/40)

51.26%
(28/55)

The best overall performance on the testing data is 42.26%. This result is produced by two
seperate scorers, which also tie for the top overall score on the training data, 55.77%. It is interesting
to see how, although the implementation including all 8 scorers ties for the top spot, many of the
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other top results come from combinations of just 3 or 4 scorers. With the very limited amount
of training data available, this could imply that implementations involving a larger set of scorers
brought with them a hypothesis space far too large, and the resulting scorer was overfit to the
training data.

The best results we see come on the WHEN and WHERE questions. Results for these types
hovers around 60%. The inclusion of named entity data regarding these types is likely a source of
success. Not surprisingly, the worst performance comes on the abstract WHY questions, scoring
about 26%. We also see that the top scorers for each question types vary quite a bit. This
could imply that modifying our system to learn separate scorers for each question type could have
potentially improved our results quite a bit. Unfortunately time constraints prohibited us from
exploring this option.

In general the expected answer modules improve our performance quite a bit, especially on
WHEN and WHERE questions, as the direct mapping from DATE and LOCATION expected
answer data to their corresponding named entity data makes for easy recognition of likely answers.
Also, it is worth noting that the domain of expertise of the expected answer scorer appears to
overlap quite a bit with the question-specific rules scorer. This can be seen from the fact that
adding either of these scorers to just the Bag of Words Scorer yields an improvement of several
points (3-5%). However, adding either the question specific scorer or expected answer scorer to a
system already utilizing the other yields very little improvement.

Also interesting is the fact that in comparing an implementation that includes the expected
answer scorer to one that does not, even if they score roughly the same on levels 3 and 4, the
implementation with Expected Answer data generally performs several points better on levels 2
and 5. This is likely due to the fact that statistics regarding conditional probabilities of named
entity and question classification data are taken over levels 2 and 5. As the weights for the composite
scorer are also learned based on sets 2 and 5, the composite scorer is likely assigning larger weights
to the expected answer scorer than is deserved, and as a result the system is overfit on levels
2 and 5. This problem could likely be avoided by splitting the data into three sets, a training
set from which conditional and unconditional probabilities are learned by the expected answer
scorer, a developmental set used by the composite scorer to train the scorer weights, and a separate
training set. Unfortunately, our training set is quite limited, and supplying each of the expected
answer and composite scorer modules with even less data would likely lead to significantly degraded
performance.

It is not clear how the tree scorer actually helps the overall system when we combine it with
several scorers. However, when we only use the tree scorer, it shows better performance on higher
levels, especially for level 5.

Flag(s) level2 level3 level4 level5 Average
org 0.346153846 0.340740741 0.353846154 0.446153846 0.371723647

org+verb 0.353846154 0.37037037 0.353846154 0.507692308 0.396438746
org+NE 0.330769231 0.362962963 0.353846154 0.461538462 0.377279202

org+verb+NE 0.361538462 0.392592593 0.353846154 0.492307692 0.400071225
verb: verbal match heuristic, NE: expected question type and named entity match

Since the Approximate Tree Matching approach tries to match a question only with parts of the
story sentence, if the sentence is very short and the dependency tree is simple, this approach will
have almost the same ability as the bag-of-words approach on measuring the similarity between the
question and the story sentence. This might be the main reason why the Tree Matching approach
did not get as much improvement on the whole system as we expected. Another thing affected the
best performance of the tree scorer might be the accuracy of the question classification. Looking
at the staticstics for expected answer types, parts of them do not seem reasonable. For example,
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for ”where” question (7:74), the probability of seeing ”DATE” is 0.56, but 0.45 for ”Loc”, and for
most subcategories of ”Loc”, it is less than 0.1. If we could have more accurate date for expected
answer type, the tree scorer might have better performance.

6 Conclusion

We have built upon our question answering system from phase 1, yielding better performance. We
have added an expected answer module to score sentence, question pairs based on their associated
named entity and question classification data. We have implemented a Tree Scorer to assign points
based on the structure of the question and answer sentences. Finally, we have designed a composite
scorer function, learning how much weight to associate to each individual scorer.

These modifications have improved our performance on the testing set by approximately 3%,
increasing from 39.25% to 42.27%. On the entire data set, performance has improved by about
8%, reaching 49.02%. Unfortunately, our final results are still considerably lower than [2]. Analysis
indicates that potential means by which we could improve our results further would be to (a) use
a larger training set, possibly split into training and development sections, and (b) learn different
composite scorers for each question type.

7 Division of Work

William Lee set up the basic architecture for the story comprehension system, wrote the the Stem-
ming and Stopword filter, implemented the BOW, TF/IDF, and Okapi scoring modules, wrote
the trained composite ranking function, and created reporting scripts to combine the data for
evaluation.

Geoffrey Levine and Benjamin Liebald worked on data preprocessing, statistics gathering, and
the Expected Answer modules.

Yoonkyong Lee implemented the Evaluation module. Xu Ling implemented the semantic classes
generation module by looking up WordNet. Then, both Xu and Yoonkyong implemented the tree
mapping algorithm.
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